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Effects of surface charge on the two-dimensional 
one-component plasma: 11. Interacting double layers 

P J Forrester and E R Smith 
Department of Mathematics, University of Melbourne, Parkville, Victoria, 3052, Australia 

Received 14 June 1982 

Abstract. The free energy density and one- and two-particle distribution functions for a 
two-dimensional one-component plasma of particles with charge q confined to a strip 
bearing charge densities on its surfaces are calculated exactly at the temperature for which 
r = q2 /kT  = 2 (this parameter being dimensionless in two dimensions). The external 
dielectric constant is the same as that in the system interior so that there are no image 
forces. The density profiles look roughly like a sum of two independent double-layer 
profiles, except at extremely close separation. At  large enough separation (more than the 
strip width) the two-particle distribution function decays with the inverse square of particle 
separation. 

1. Introduction 

An earlier paper (Smith 1982, hereafter referred to as I) discussed the two-dimensional 
one-component plasma of particles of charge q at a temperature given by q 2 / k T  = r = 
2. The system was confined to a disc, the edge of which carried a constant charge 
density -uq, and there was a uniform background charge density -qq in the disc with 
q chosen to make the system electrostatically neutral. The region outside the disc 
was a dielectric continuum with a dielectric constant of one (equal to that inside the 
disc) or zero (when images of the same sign and magnitude as the particles are 
generated). At the temperature r = 2 it is possible to obtain exact bulk and surface 
properties. In the limit of infinite disc radius (R), the surface properties are those of 
a straight surface edge bearing a finite charge density. In particular, as well as bulk 
properties, the excess surface free energy per unit length of surface and the one- and 
two-particle distribution functions close to the surface were obtained in closed form. 
With the external dielectric constant (E, )  equal to one, a double layer is established 
which contains a net charge to cancel exactly the charge on the surface, and the first 
moment of the double-layer density profile obeys a sum rule derived by Blum et a1 
(1981). For e ,  = 0 the double layer profiles are similar to those with E ,  = 1, but move 
out from the wall somewhat in response to a repulsive force on the particles excited 
by the images. The sum rule is again obeyed. 

This similarity between the E ,  = 0 and e ,  = 1 cases does not extend to the two- 
particle distribution functions. Jancovici (1982a, b), in extending earlier exact studies 
of this system at r = 2 (Jancovici 1981, Alastuey and Jancovici 1981), has given a 
heuristic derivation of the result that along a wall of dielectric constant ew, the 
two-particle distribution function for two particles close to the wall but distant y from 
each other in a direction parallel to the wall will decay as &,f(xl, x z ) / y y .  Here v is 
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the dimensionality of the system, x1 and x2 are the distances of the two particles from 
the wall and f (x l ,  x2) is a function which remains finite while x1 and x2 are finite. His 
exact results for the two-dimensional one-component plasma at r = 2 with = 1 
agree in giving a y-’ decay of the two-particle distribution function. Qn the other 
hand, he has shown that for = 0, the exact results of I give an exponentially damped 
oscillatory behaviour. 

These assorted general and particular results for single double layers make it of 
considerable interest to study the structure of two interacting double layers. There 
are many interesting features, of which the free energy per unit length of double layer, 
and the one- and two-particle distribution functions are examples. These are studied 
in this paper. They not only provide exact examples in the context of which general 
sum rules for the properties of electrostatic systems may be considered, but also 
provide examples on which approximate techniques in the theory of double layers 
may be tested. In this paper the case of a strip with external and internal dielectric 
constants equal is studied, so that there are no image forces. This simplification 
certainly makes the calculations simpler. 

Section 2 of this paper introduces a finite system for which exact calculations may 
be performed at r = 2 .  The system is not a strip but an annulus of width 2L with 
inner and outer radii R - L and R + L respectively. The annulus has appropriate fixed 
charge densities on both edges and a background charge density as well. There are 
N particles of opposite charge to the background in the annulus, and the system is 
exactly electrostatically neutral. The Hamiltonian for the system is written down and 
the canonical partition function and one- and two-particle canonical partition function 
calculated exactly for the annular system. In 0 3 the limit of these expressions as 
R -* is discussed, giving distribution functions and a free energy per unit length of 
overlapping double layers. The range of interaction of double layers is seen to be 
small. In 0 4 some consequences of these exact results are discussed, including a sum 
rule for the derivative of the free energy per unit length of a pair of interacting double 
layers with respect to an applied electric field. 

2. The system and its exact integrals 

Consider a system of N particles of charge 4 at positions rl ,  . . . , rN in an annulus of 
inner radius R - L ,  outer radius R + L. There are charge densities -U-4 on the inner 
edge and -u+q on the outer edge while the annular region has a uniform background 
charge density -774 as well as the particles. The system is exactly electrostatically 
neutral so that 

N = 21r(R - L)u- + 41rRL77 + 2 r ( R  + L)u+. (2.1) 

The pair interaction between charges is the solution of the two-dimensional Poisson 
equation, namely log(r, -rs)’ for two charges 4= at re and q8 at rs. The 
Hamiltonian consists of a variety of terms, but may be written, after some integration, 

1 

2 
ri N 

:q2(N* - Z B  - 2-) c log - N-1 N I r k  -rj12 H=--hq2 1 log--- 
k = l  j = k + l  (R  + L ) 2  j - 1  ( R + L ) 2  

N 

i-1  
r ; / ( R  + L ) 2 + a q 2 N  log(R +L)’ 
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where N *  = r q  (R + L)2, L = 2 r ( R  f L)a* and Z B  = 4rRLq.  
This Hamiltonian may be substituted into the usual integrals for the partition 

function and one- and two-particle distribution functions. An integral over the annulus 
may be written using an (r, 0)  parametrisation of points in the annulus so that 

J d2r = J R + L  r dr Jo2= de. 
R-L 

It is then convenient to use the change of variables zk = rk/(R + L )  and the usual van 
der Monde determinant representation for the Boltzmann factor in the integrand. 
The procedure works in exactly the same way as it does for a system confined to a 
disc. The canonical partition function for r = 2 has the form 

where DN is the determinant of the matrix with k ,  1 element (21 eieL)k-l, If DN and 
D$ are replaced by the usual expansions of determinants as sums over permutations 
of (1, . . . , N) then the integrals may be performed at once and, after a little thought, 
all the zl  integrals carried out in terms of differences of incomplete gamma functions. 
The standard definition 

is used for the incomplete gamma functions. The canonical partition function at r = 2 
is then 

(2.5) 

Once this method of integrating thc canonical probability density has been sorted 
out, the integrals for thc one- and two-particle distribution functions can be performed 
without too much effort. Large parts of the expression for zN(2) cancel from these 
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expressions and a relatively simple form remains. It is convenient to define the function 

These expressions for the one- and two-particle distribution functions have structures 
very similar to those reported in I for the same functions. 

3. The large-radius limit 

In the limit R + 03 with L fixed, the system becomes a pair of straight charged lines 
bearing linear charge densities -a-q and -u+q separated by a region of width 2L 
which contains a uniform background charge density -774 and a one-component 
plasma of average particle density p = U- +U+ + 277L. The free energy per unit length 
of the system is then 

f ( L ,  a+, a-,  77) = lim - (k7’/27rR) log ZN(2) 
R - w  

( 3 . 1 )  

where a+ and a -  are the two dimensionless surface charge density parameters 

a ,  = u*(27r/77)”2. ( 3 . 2 )  
A ‘Debye length’ for the system is defined by A D  = 1 / ~  with K *  = 2 ~ 7 7 .  The calculation 
of the free energy per unit length is rather tricky since the right-hand side of equation 
( 3 . 1 )  with equation ( 2 . 5 )  substituted for &(2) contains a large number of potentially 
divergent terms as R -P CO. In fact, these terms all cancel to zero when sufficient care 
is taken with the algebra and a finite free energy remains in the limit. The only 
non-obvious procedure is the replacement of the incomplete gamma functions by their 
uniform asymptotic expansions (see I). The sums of logarithms which arise may be 
conveniently written as integrals in the limit R + CO and the final result for the free 
energy may be written in the form 

f (L ,  U + ,  a-,  77) = (kTK/27T)[ Y iOg(277/T2)-$Y3 

(a+ f t y - ) ( f f  +CY- +4KL Y) 4- $(KL)3 +FA(KL, a+, a- )]  (3 .3 )  
1 where Y = & + + q a - + ~ L  and 

F * ( K L , ~ + , ~ - ) =  - dtlog{[erf(t+ Y-a-)-erf(t-  Y + a + ) ]  JOY 
x[erf(t+ Y-a+)-erf(r-  Y+a-)I}. (3.4) 
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Here erf(x) is the standard error function. Figure 1 shows plots of 

Af = (2T/kTK)[f(L,  a+, a-, q ) - , f ( L ,  0,  0, q)-$(*++(Y-) 1Og(27/T2)-$((Y: +a:)] 
(3.5) 

as a function of K L  for a-=a+= 1.5 and for *-=-a+= -1.5. In these plots, K is 
considered fixed so that L, the distance between the charged walls, is being varied. 
It may be seen that for K L  b 1.0 the system has a free energy corresponding to two 
non-interacting double layers and this gives an estimate of the range over which the 
double layer interaction is significant. 

6 .\ 

I 

0-- 1 2 3 ' 4 

2 x 1  

Figurel. Plots of A f = ( 2 v / k T K ) [ f ( L ,  1, 1, 7 ) - F ( L ,  0 ,  0 ,  .1 l ) -$(a++a-) log(27/n~)-  
?(a+ +a-)]. Fullcurve, a - = a + =  1 .5 ;  brokencurve, a-=-a+=-1.5. 1 3  3 

A similar procedure using the uniform asymptotic expansion of the incomplete 
gamma functions involved may be used to estimate the function H ( X )  in the limit 
R + 00. It is convenient to measure distances from x = 0 at the surface leaving charge 
density -u+q to x = 2L at the surface bearing charge density -u-q. The density 
profile across the pair of interacting double layers has the representation 

P d X )  = 7 7 h ( X )  (3 .6 )  
where 

h i * ) = - /  2 y  dt( exp[-(t+ Y - ~ + + K x ) ~ ]  
> *  

exp[-(t- Y+cx++KX)~] + 
J i  erf(t+ Y-a+)-erf( t -  y + a - )  erf(t+ Y-a-)-erf(t-  y+a+) 

Figure 2 contains plots of h ( x )  as a function of K X  for a-  = -a+ = 1.0 and several 
values of ~ K L  while figure 3 contains similar plots but with a- = a+ = 1.0. Notice that 
the profiles look like two independent profiles for 2 ~ L a 2 ,  a rather small value 
consistent with the estimate of double-layer interaction range obtained from the free 
energy plots. For smaller separations, both figures show that the interaction causes 
gross distortion of the double layers. 

The two-particle distribution function for particles at ( x l ,  0) and ( x z ,  y )  is given by 

~ ( 2 ~ x 1 ,  x 2 ,  Y ) =  q2{h(~ l )~ (~2) -e~p[ - - rrqr :2IIh[~ (x~+x2+iy )~I2 )  (3.7) 
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-5 -4 -3 -2 -1 
n x  

Figure 2. Plots of p ~ ~ l ( x ) / ~  as a function of K X  with x measured from the centre of the 
layer with a -  = -a+ = 1. Figures on curves refer to the appropriate values of ~ K L .  

1 I b 
-5 - 4  -3 - 2  -1 0 1 2 3 4 5  

X X  

Figure 3. Plots of P , ~ , ( X ) / V  as a function of K X  with x measured from centre of layer with 
a- = a +  = 1. Figures on curves refer to the appropriate values of ~ K L .  

where r:,  = ( x  - x2)2 + y ’. Of course within the interacting double layers 0 S X k  s 2L 
so x1 and x 2  remain bounded. The asymptotic expansion of the two-particle distribu- 
tion function at large y displays the remarkable property of polynomial decay described 
first by Jancovici (1982a). Thus, as y + co 

where A(xl ,  x2; y )  is a function which remains bounded away from zero for all xl ,  x 2  
in the range [0,2L]. Thus the whole of the strip of interacting double layers is 
characterised by very long-ranged particle-particle correlations. 



Double layers in ZD OCP 3867 

4. Conclusions 

There are few surprises about the exact results presented in this paper. They do, 
however,.allow tests to be made on more general exact and approximate theories of 
plasma systems. An example of this is to consider a strip of width 2L with charge 
densities U+ on one edge and -U+ on the opposite edge. This system may be interpreted 
as having an electric field 

E = 2m7q (4.1) 

imposed normal to the edge of the strip. The Hamiltonian for such a system may be 
written in terms of the Hamiltonian with zero field: 

(4.2) 

the terms on the right-hand side of this equation being in order: H(O), the interaction 
of the particles with the field, the interaction of the background with the field and 
the interaction of the surface charge densities with the field. The free energy per unit 
length of a strip of length W in the thermodynamic limit is then 

2L W 2 L  k T  f =  lim -w lo dYi lo dxi . . . lo dyNlo dxN exp(-H(E)/kT), (4.3) 
W+m 

where, of course, N increases with W in the usual way. Assuming that the thermo- 
dynamic limit commutes with differentiation with respect to E then gives 

(4.4) 

a sum rule relating free energy and density profile, analogous to that derived in the 
same way for a single surface (Jancovici 1981, private communication). It may be 
checked by direct examination of equations (3.4) and (3.6) when it will be found that 
it holds. Another feature of this interpretation is given by the density profiles plotted 
in figure 2. They show that the electric field is in fact screened extremely rapidly by 
the double layers set up at the edges of the strip. 

Another most interesting question which may be asked about this system is the 
way it changes when image forces act on it from one or both sides. In particular it 
would be of great interest to see how surfaces with dielectric constant zero on both 
sides of the strip might affect the considerations on two-particle distribution functions 
in Coulombic systems near surfaces introduced and developed by Jancovici (1982a, b) 
and the structural features in periodic strips uncovered by Choquard (1981) for this 
system. Work is in progress on these questions. 
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Note added in proof. Jancovici (private communication) has pointed out that the form 
of the function A(xl,  x2; y )  in equation (3.8), namely A(xl ,  x2 ;  y )  = 
A(xl ,  x2)+exp(-Y2)B(xl, x2) cos 2 ~ Y y ,  gives two types of decay with large y. Here 
A(xl ,  x2) and B(xl,  x2) are positive and bounded away from zero in [0,2L]. The first 
type of decay, A/y2, is that predicted by Jancovici’s general theory at the surface of 
a half space (Jancovici 1982b). The second type, cos(2x2Ly)/y2, is not predicted by 
that theory this is because the theory estimates the singularity at k = 0 in the Fourier 
transform with respect to y of the two-particle distribution function h ( 2 ) ( ~ 1 ,  x2; f).  It 
cannot predict the structure of singularities at k f 0, as is the case here. This property 
of the system apparently reflects the one-dimensional nature of the system. 
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